![]() |
1999 IEEE International Ultrasonics Symposium Proceedings See also interactive demonstration of vibrational modes in a PZT5A disk with a cork front layer of varying thickness and other publications by Jan Kocbach.
FE Simulations of Piezoceramic Disks with a
|
![]() |
1. IntroductionMany experimental and theoretical studies of the frequency spectra of resonant vibration in disks of isotropic and piezoceramic materials with varying D/T (Diameter/ Thickness) ratio have been reported in the literature, e.g. [1] [2] [3] [4], including some systematic investigations of piezoceramic disks using the Finite Element (FE) method, e.g. [5] [6]. In the present work the more complex case of a piezoceramic disk with a front layer (see Fig. 1) is investigated using the FE method. Many authors have investigated piezoceramic disks with a coupling layer operating around the TE1 mode of the piezoceramic disk using 1D transmission-line equivalent models (see e.g. [7]), but good analytical models are not available for the study of piezoceramic disks with a front layer in the frequency band around the R1 mode. The case of a long rectangular PZT5H bar with a matching layer of varying thickness operating in water has been studied using the FE method [8], but systematic studies of piezoceramic disks with a front layer of varying thickness using the FE method are felt to be needed.In the present work FE simulations are compared to simulations obtained using the Mason model for the frequency band around the TE1 mode for several different front layer materials. Also, the effect of changing the thickness and material parameters of the front layer for the frequency band around the R1 mode is investigated using the FE method, and compared to the effects seen for the frequency band around the TE1 mode. The motivation for these investigations is the optimization of piezoceramic air and gas transducers, and especially the analysis of the effect of the thickness and material properties of the coupling layer for such transducers. Although this work is preliminary, it is considered to represent an important step in understanding the vibration and response of piezoceramic transducers.
2. MethodThe results presented are simulated using FEMP, Finite Element Modeling of Piezoelectric structures [9], a FE code developed at the University of Bergen and Christian Michelsen Research AS. For all simulations, 5 elements per smallest wavelength (shear) are used in both the piezoceramic disk and in the front layer. Systematic convergence tests have shown that the relative error in calculated resonance frequencies is less than 0.2%, and that the error in calculated electrical and mechanical response functions is less than 2% of their maximum value for each front layer thickness. The large errors in response functions are due to the movement of resonance frequencies to lower frequencies when the element division is improved, leading to a corresponding movement of the peaks of the electrical and mechanical response functions occurring close to the resonance frequencies.The losses in the piezoceramic and elastic media are described using complex material constants, where a single value is used for all elastic Q-factors (Qm=75) and a single value is used for the dielectric Q-factors (Qe=50) for the piezoceramic material, and a single value is used for both elastic Q-factors (Q=25) in the isotropic elastic front layer. Electrical and mechanical response functions are calculated using the mode superposition method, where the eigenmodes are calculated using a complex eigensolver. The FE model is axisymmetric, and the effect of a fluid medium surrounding the structure has been neglected in these simulations. The FE code has been validated against the FE codes ABAQUS, ANSYS and CAPA. For all cases considered, the relative deviation for calculated resonance frequencies compared to these FE codes has been less than 0.0008% [9]. Validations have been performed for piezoceramic disks with and without a front layer. Additionally several tests have been performed against literature results.
3. ResultsIt is studied how the resonance frequencies, the electrical input conductance and the average surface normal displacement of a structure, consisting of a piezoceramic disk with a front layer, varies when the thickness of the front layer varies from zero (pure piezoceramic disk) to well above the quarterwave matching thickness for the disk. As an example, two different PZT5A disks with thickness![]()
PZT5A disk without a front layerAs a basis for the investigations, some results for piezoceramic disks without a front layer are given [9]. It is well known that the resonance frequencies and response functions of piezoceramic disks vary largely with the D/Tpiezo ratio of the disks [5]. In the frequency spectrum of PZT5A [10] disks given in Fig. 2a), the disk with D/Tpiezo=10 is identified using a vertical line. The electrical input conductance and the average normal displacement per volt over the front surface of the disk (the transfer function Uav,z/V) are shown as functions of frequency in b) and c), respectively. It is seen that there are several modes contributing to these electrical and mechanical response functions around the TE1 mode (which is predicted by the 1D Mason model [11] at![]()
PZT5A disk with a front layer: TE1 mode regionThe PZT5A disk with D/Tpiezo=10 and a front layer of varying thickness Tfront is studied. Three different front layer materials with characteristic impedances varying from 2.64 Mrayl (epoxy) to 0.15 Mrayl (cork) are used (see Table 1). These materials are chosen because the density is approximately equal for epoxy and RTV, whereas the compressional velocity for epoxy is twice the value for RTV. Furthermore, the compressional velocity is approximately equal for RTV and cork, whereas the density of cork is 1/9 of the density of RTV. That is, using these three materials for the front layer, it is possible to analyze the effect of independently changing the compressional velocity and density of the front layer. Poisson's ratio![]()
In previous studies using 1D transmission-line equivalent models, the occurrence of two
peaks with positions varying with the thickness of the front layer has been
reported [7]. This is shown in Fig. 3 d)-f),
where the electrical input conductance for the piezoceramic disk with three
different front layer materials of varying thickness
simulated using the Mason model [11],
are displayed. The peaks are
symmetric with equal height at the quarterwave matching thickness of the
TE1 mode,
In Fig. 3 a)-c) corresponding figures simulated using the FE method are shown. As expected from the electrical input conductance for a piezoceramic disk without a front layer presented in Fig. 2b), this case is far more complex, with several minor peaks in the electrical input conductance, in addition to the two major peaks predicted by the Mason model. However, the overall pattern is very similar, and the observations made for the 1D simulations above are also seen for the FE simulation. Some of the peaks, e.g. the two major peaks, are not due to a single vibrational mode, but due to the superposition of several different vibrational modes which are close to each other in frequency.
When a thin front layer with low characteristic impedance
(e.g. cork, see Fig. 3c)) is attached to
the piezoceramic disk, the resonance frequencies of the structure are
virtually unchanged up to a certain thickness of the front
layer. This front layer thickness depends on the frequency and on the shear
velocity of the front layer material, and is found to be around
For a front layer with higher characteristic impedance (e.g. epoxy,
see Fig. 3a)), the coupling between vibration in
the piezoceramic disk and in the front layer is stronger,
and therefore the drop in resonance frequencies is not that sudden.
Changing the shear velocity of the front layer does not affect the
electrical input conductance as a function of front layer thickness
much, but the front layer thickness
PZT5A disk with a front layer: R1 mode regionFor the frequency region around the R1 mode, results for a disk of PZT5A with D/Tpiezo=3 are shown as an example, with either a cork or an epoxy front layer of varying thickness. In Fig. 4 the average normal displacement per volt over the front surface of the structure (the transfer function Uav,z/V) is shown as a function of![]()
From the figure it is evident that
close to the quarterwave matching thickness for the R1 mode,
However, when other front layer materials
are attached to the piezoceramic disk, this is not always the case.
It may be impossible to identify two major peaks in both electrical input conductance and
average displacement.
Also, the maximum of the average displacement over the front of the disk may be
shifted to another front layer thickness, and in some cases no distinct
maximum may be found at all.
Furthermore, in contrast to the case for the
frequency region around the TE1 mode, the shear velocity has a major impact
on both the electrical and mechanical response of the structure. As an
example, consider a piezoceramic disk with an epoxy front layer
(see Table 1 for material parameters).
If Poisson's ratio is taken to be 0.25, a splitting of the electrical input
conductance and the average displacement into two major peaks is seen around the front layer
thickness
Analogous to the case for the frequency band around the TE1 mode, the
resonance frequencies of the structure are virtually unchanged up to
the front layer thickness
4. ConclusionsA program for FE analysis of piezoceramic disks has been developed. The FE program has been validated against several other FE codes, and the accuracy of the calculated results has been established through convergence tests. The frequency bands around the TE1 mode and the R1 mode for piezoceramic disks with a front layer of varying thickness have been studied.For the frequency band around the TE1 mode, agreement with 1D transmission line model simulations has been found. In addition the effect of changing the characteristic impedance of the front layer has been demonstrated, and it has been shown that the shear velocity does not affect the electrical input conductance in the TE1 mode region significantly.
For the frequency band around the
R1 mode, similar effects to the ones for the frequency band around the TE1 mode
are seen for a cork front layer. However, for other front layer materials,
the situation changes significantly.
Additionally, the
shear velocity in the front layer is important for the response of the
structure, and therefore a description of shear vibrations in the front layer is necessary
for accurate modeling of R1 mode transducers.
Furthermore, it has been shown that for the front layer materials and frequency
regions considered,
the resonance frequencies and response of the piezoceramic disk is not much affected by a
front layer thinner than
For a low-impedance front layer material (e.g. cork), all lines in the spectrum which seem to be crossing the nearly horizontal lines emerging from the left side of the spectrum (eigenmodes in a piezoceramic disk without a front layer), are associated with eigenmodes in the front layer. For a higher-impededance front layer material, the coupling between the vibration in the piezoceramic disk and in the front layer is stronger. Therefore, the vibration in the piezoceramic disk is more affected by the front layer, and the lines emerging from the left side of the spectrum are not that horizontal. The present work extends previous systematic analyses on piezoceramic disks by accounting for a front layer in the FE analysis. Although the work is preliminary, it is considered to represent an important step in understanding the vibration and response of ultrasonic air and gas transducers.
Bibliography
|
This document was generated using the
LaTeX2HTML translator Version 98.1p1 release (March 2nd, 1998)
Copyright © 1993, 1994, 1995, 1996, 1997,
Nikos Drakos,
Computer Based Learning Unit, University of Leeds.
The command line arguments were:
The translation was initiated by on 1999-10-13
About this document ...
FE Simulations of Piezoceramic Disks with a
Front Layer of Varying Thickness
latex2html -split 0 -no_navigation ieee_article.tex.
1999-10-13
Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331
/ Piscataway, NJ 08855-1331, USA.Telephone: + Intl. 908-562-3966.